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ABSTRACT

Let S denote the ring of endomorphisms of a finite dimensional module M.
Necessary and sufficient conditions for a nil subring of S to be nilpotent are
given. We place conditions on My so that every nil subring of .S will be nilpotent.

1. Introduction.

Assume that a module M contains a direct sum of n-nonzero summands and
the number of nonzero summands of any other direct sum of M is at most n. We
call M a finite dimensional module [3] and say that M has dimension n, written
dim M = n. Throughout this note R always denotes a ring, M a right R-module
and S the ring of endomorphisms of My. We define N(S) = {xeS: ker x is an
essential submodule of M}. If x and y are in S then (xy)(m) = x(y(m)) where m is
in M.

Feller [2] has studied the relationship between M and S when dim M = 1. If
M is a uniform module (that is, dim M = 1) then S/N(S) is an integral domain.
Ifin addition M is Noetherian then N(S) is a nil ideal of S (th. 3.1 [2]). This paper
extends these two results. If M is a finite dimensional module then S/N(S) is
embeddable in a completely reducible ring. A nil subring of S/N(S) is nilpotent.
Also, a nil subring K of Sis nilpotent if and only if K N N(S) is nilpotent (Theorem
3). In Section 3 we place a condition on M so that N(S) will be nilpotent (Theo-
rem 10). The Noetherian condition implies our condition but not conversely.

2. The nil structure of S
We denote the injective hull of My by I(M). Recall, dim I(M) = dim M when-
ever M is finite dimensional. For a general reference consult [7].
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NoraTioN. Let H denote the ring of endormorphions of I(M). Equate
N(H)= {heH: ker his an essential submoduse of M}.
The first part of the proposition below is well-known.

PrOPOSITION 1. Let M be a finite dimensional module. Then the ring H of
endomorphisms of (M) is semiperfect, Furthermore, dim M = H [N(H).

PrOOF. We refer to the proof of prop. 2 of [ 7, p.103]. If the dimension of H /N
is k then there will be k primitive idempotents e;,e,, -- ¢, in H/N. These idem-
potents remain primitive in H. Hence, I(M) = e;I(M) + --- + ¢, J(M) where each
summand is injective and is indecomposable and thusthas dimension 1. Therefore,
k =dim M.

Recall, S is the ring of endomorphisms of My and H the ring of endomor-
phisms of I(M). Let S’ denote the set of elements h of H such that the restriction
of hto M isin S. Then S/N(S)is ring isomorphic to S'/N(S"); x + N(S) is mapped
onto x’ + N(S’) where the restriction of x’ to M is equal to x. Also the map
g(y + N(S"))=y + N(N) where y e ', is an embzdding of S’ /N(S") into N /H(H),
since N(S) = N(H )N §’. Summing up, S/N(S) is ring isomorphic to a subring
of H/N(H).

LeMMA 2. If Sis a ring of endomorphisms of a module M, then S| N(S) is
embeddable in the regular ring H/N(H) where H is the ring of endomorphisms
of I(M).

PrOOF. By the above paragraph, S/N(S) is embedded in H /N(H). The ring
H /N(H) is regular in the sense of von Neumann [7, p. 102].

If A is nonempty subset of a ring R we define r(4) = {xe R: ax = 0 for all
a e A}. This right ideal is called the right annihilator of A in R. The left annihi-
lator of A is similarly defined.

THEOREM 3. Let S be the ring of endomorphisms of a finite dimensional
modulie with dimension n. Then S |N(S) is embeddable in a completely reducible
ring of dimension n. A chain of right (or left) annihilators in S [N(S) has at most
n nonzero terms. Furthermore, a nil subring of S/N(S) is nilpotent and has an
index of nilpotentcy of at most n + 1. If N(S) is nilpotent with index k, than a

nil subring of S is nilpotent with index at most k(n + 1).
PrOOE. Let S denote the ring of endomorphisms of M, H the ring of endo-

morphisms of I(M). Let dim M = n. By Lemma 2 the quotient ring S/N(S)
is embedded in H /N(H). If A and B are nonempty subsets of S/N(S) and r(4)
< r(B) in S /N(S) then r(A) = r(B) in H [N(H). Thus, a cbain of right annihilators
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in S/N(S) of length k forces a chain of right ideals of length k in H/N(H). A chain
of right ideals of H /N(H) has at most n nonzero terms because H /N(H) is a
completely reducible ring and has dimension n by Proposition 1. Therefore, a
chain of right (or left) annihilators in S/N(S) has at most n nonzero terms. A nil
subring of H /N(H) is nilpotent and has an index of nilpotency of at most n + 1.
The remainig part is clear.

COROLLARY 4. (Feller [2]). If Mg has dimension 1 then S [N(S) is an integral

domain.

PrOOF. A completely reducible ring with dim 1 is a division ring. The result is
clear.

If M =R then S =R and N(S) = N(R). Clearly, N(R) is the right singular
ideal of R [6].

COROLLARY 5. (Shock [10]). Let R be a right finite dimensional ring with dim
n. Then a nil subring K of R is nilpotent if and only if K N N(R) is nilpotent.
If N(R) is nilpotent with index k then every nil subring of R is nilpotent and has
index of nilpotency of at most k(n + 1).

Proor. The proof follows directly from Theorem 3.

If a ring R does not have an identity 1, embed it into a ring with 1, written
R,[1, p. 10]. Thus, Hom(Mg, Mg)=Hom(M,,Mp,), My is injective if and only
if M is injective, and dimMy = dimMg, [1, p. 10-11]. Also R /N(R) is embedded
in R; /N(R,). Theorem 3 is valid for rings without 1.

3. Nil subrings of S are nilpotent.

In this section we place conditions on M so that every nil subring of S will be
nilpotent. Our approach is via Theorem 3. If M is finite dimensional and N(S) is
nilpotent then every nil subring of S is nilpotent.

Let S be the ring of endomorphisms of the module M. Then (M, isabimodule.
For nonempty subset A of M we define r(4) = {xeR: ax =0 for all ae 4}. The
right ideal r(4) is called an annihilator of M. We say that the module M satisfies
the maximum condition on annhihlators provided that every nonempty subcol-
lection of {r(4): Ais nonempty subset of M} has a maximal element. We define
I(4)={peS: pa=0for all ac A}.In like manner we make similar definitions
for the module <M and S and speak of the minimum condition on annihilators
of sM and sS. Also if K is a nonempty subset of S we equate KM with {km: for
allmeM and forall ke K}.
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LemMA 6. If sM satisfies the minimum (maximum) condition on annihila-
tors, then so does gS.

Proor. Let 4 and B be nonempty subsets of S with A = B. Then I(4)>I(B) in
sS implies AM = BM in M and I(AM) o> I(BM) in S. The proof is clear.

ProrosiTioN 7. (Mewborn and Winton). Let S be the ring of endomorphisms

of a module M. If sM satisfies the minimum condition on annihilators then N(S)
is nilpotent.

Proor. By the lemma ¢S satisfies the minimum condition on annihilators.
This implies that ¢S satisfies the maximum condition on annihilators. Let N
= N(S). We have r(N’) = r(N’*1) in S for positive integer j. Let xe N — r(NY).
If N'yx =0 forall ye N then x e r(N’+1), a contradiction. Thus, x,x € N — r(NY)
for some x, in N. We continue in this manner to constructan infinite sequence
X, X, Xz, -+ in N with x, --- x;x # 0 for all positive integers k. Therefore, ker x
cker x;x cker x,x;x < -+ because ker x, . is essential in M and meets x; -~
x,xM for all k. This implies I(ker x)> I(ker x;x) > --- in S, a contradiction. We
conclude that N = r(N’) and N is nilpotent.

CoROLLARY 8. (Mewborn and Winton [9]). If a ring R satisfies the maximum
condition on annihilators of Ry then the right singular ideal is nilpotent.

Proor. The proof is clear.

Let A and B be submodules of My. Following [8] we say that B is an M-
rational extension of A provided that A < B and if f is any R-homomorphism
from a submodule of B into M and the kernel of f 2 A then f must be the zero
map. Also, a submodule A of B is said to be M-rationally closed if A has no
proper M-rational extensions in B. A right ideal T of R is said to be M-dense
provided that mT = 0 with m in I(M) implies m = 0. Equivalently, for each 0 >~ m
in M and x in R there exists y in R such that my #0and xy in T. If be M and P
is a nonempty subset of M we define b~ P={reR: br e P}. For a submodule K
of Mlet K' ={meM: m~'K is M-dense} and K’ is a submodule and is called
the rational closure of K in M [11]. Furthermore, K is M-rationally closed if and
only if K = K’ [11]. We say that My satisfies the maximum condition on ration-
ally closed submodule if every nonempty subcollection of the collection of M-
rationally closed submodules of M has a maximal element. If M = R, then a R-
rationally closed right ideal of R is an annihilator of I(R) (and conversely) [11].
Rings with the maximum condition on rationally closed right ideals are called
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Solid Goldie rings [5]. A Noetherian ring is a Solid Goldie ring but not conversely
In a Solid Goldie ring a nil subring is nilpotent; our Theorem 10 below general-
izes this fact.

LemMA 9. Let A and B be submodules of Mg with A< B. Then A’ < B' if
and only if b=1A is not M-dense for some be B — A.

Proor. Clearly, A’ = B’ if and only if B < A’ if and only if b~*4 is M-dense
forall be B — A.

TueorREM 10. Assume that My satisfies the maximum condition on rational-
ly closed submodules of M. If S is the ring of endomorphisms of Mg then (M
satisfies the minimum condition on anihilators. Furthermore, every nil subring
of S is nilpotent.

Proor. We claim that My is finite dimensional. Suppose that 4 + B is a direct
sum of nonzero submodules of M. Then for any be B — A we have b(b~14) = (0)
and b~ !4 is not M-dense and thus A’ < (4 + B)’ by Lemma 9. So an infinite direct
sum of nonzero submodules of M would force an increasing sequence of rationally
closed submodules of M, a contradiction. Therefore, M is finite dimensional, Let
E and F be nonempty subsets of M with E < F and suppose I(E) o I(F). Since I(E)
is equal to the left annihilator of the submodule of My generated by E we can
regard E (and F) as submodules. There is x € § such that xE = 0 and xp # 0 for
some p e F. Therefore, xp(p~*E) = (0) and p~'E is not M-dense and E’ = F’ by
Lemma 9. So a decreasing sequence of annihilators in S would force an increasing
sequence of rationally closed submodules of Mg, a contradiction. Therefore, (M
satisfies the minimum condition on annihilators and N(S) is nilpotent by Propo-
sition 7. By Theorem 3 every nil subring of S is nilpotent.

CorROLLARY 11. (Lance Small). In the ring of endomorphisms of a Noether-
ian module a nil subring is nilpotent.

PRrROOF. A noetherian module has the maximum condition on rationally closed
submodules.

A ring R is said to be semiprimary if R is semiperfect and the Jacobson radical
of R is nilpotent.

COROLLARY 12. Let My be an injective module which has the maximum con-
dition on rationally closed submodules. Then the ring of endomorphisms of My
is a semiprimary ring.

Proor. This follows from Proposition 1 and Theorem 10,
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