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ABSTRACT 

Let S denote the ring of endomorphisms of a finite dimensional module M R. 

Necessary and sufficient conditions for a nil subring of S to be nilpotent are 
given. We place conditions on M R so that every nil subring of S will be nilpotent. 

1. Introduction. 

Assume that  a module  M contains  a direct sum o f  n-nonzero  summands  and 

the number  o f  nonze ro  summands  o f  any other  direct sum of  M is at mos t  n. We 

call M afinite dimensional module  1-3] and say that  M has dimension n, written 

dim M = n. Throughou t  this note  R always denotes a ring, M a right R-module  

and S the r ing o f  endomorph isms  o f  M R. We define N(S) = (x ~_ S:  ker x is an 

essential submodule o f  M}. I f  x and y are in S then (xy)(m) = x(y(m)) where m is 

in M. 

Feller I-2] has studied the relationship between M and S when dim M = 1. I f  

M is a un i form module  (that is, d im M = 1) then S IN(S) is an integral domain .  

I f  in addi t ion M is Noether ian  then N(S)  is a nil ideal o f  S (th. 3.1 [-2]). This paper  

extends these two results. I f  M is a finite d imensional  module  then SIN(S) is 

embeddable in a completely reducible ring. A nil subring of  S/N(S) is nilpotent.  

Also, a nil subring K of  S is ni lpotent  if and only if K c3 N(S) is ni lpotent  (Theorem 

3). In  Section 3 we place a condi t ion  on M so that  N ( S )  will be ni lpotent  (Theo-  

rem 10). The Noetherian condi t ion  implies our  condi t ion  but not  conversely. 

2. The nil structure of  S 

We denote  the injective hull o f  M R by I(M). Recall, dim I(M) = dim M when- 

ever M is finite dimensional.  For  a general reference consult  [7]. 
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NOTATION. Let H denote the ring of endormorphions of I ( M ) .  Equate 

N (H) = {he H: ker h is an essential submoduse of M}. 

The first part of the proposition below is well-known. 

PROVOSmON 1. Let M be a finite dimensional module. Then the ring H of 

endomorphisms of I(M) is semiperfect. Furthermore, dim M = H /N(H). 

PROOF. We refer to the proof of prop. 2 of I-7, p. 103]. If the dimension o f H / N  

is k then there will be k primitive idempotents el,e2,...e k in H/N.  These idem- 

potents remain primitive in H. Hence, I(M) = ell(M) + ... + ekI(M) where each 

summand is injective and is indecomposable and thuslhas dimension 1. Therefore, 

k = dim M. 

Recall, S is the ring of endomorphisms of MR and H the ring of endomor- 

phisms of I(M). Let S' denote the set of elements h of H such that the restriction 

of h to M is in S. Then S/N(S) is ring isomorphic to S'/N(S');  x + N(S) is mapped 

onto x' + N(S') where the restriction of x' to M is equal to x. Also the map 

g(y + N(S')) =y + N(N) where y ~ S', is an embedding of S'/N(S')  into N/H(H), 

since N(S) = N ( H ) n  S'. Summing up, S/N(S) is ring isomorphic to a subring 

of  U/N(H). 
LEMMA 2. I f  S is a ring of endomorphisms of a module M, then S / N(S) is 

embeddable in the regular ring H/N(H) where H is the ring of endomorphisms 

of I(M). 
PROOF. By the above paragraph, S/N(S) is embedded in H/N(H). The ring 

H/N(H) is regular in the sense of yon Neumann [7, p. 102]. 

If A is nonempty subset of a ring R we define r (A) = {x ~ R: ax = 0 for all 

a ~ A}. This right ideal is called the right annihilator of A in R. The left annihi- 

lator of A is similarly defined. 

THEOREM 3. Let S be the ring of endomorphisms of a finite dimensional 

module with dimension n. Then S /N(S) is embeddable in a completely reducible 

ring of dimension n. A chain of right (or left) annihilators in S /N(S) hasatmost 

n nonzeroterms. Furthermore, a nil subring of S/N(S) is nilpotent and has an 

index of nilpotentey of at most n + 1. I f  N(S) is nilpotent with index k, than a 

nil subring orS is nilpotent with index at most k(n + 1). 
PROOF. Let S denote the ring of endomorphisms of M, H the ring of endo- 

morphisms of I(M). Let dim M = n. By Lemma 2 the quotient ring S/N(S) 

is embedded in H/N(H). If A and B are nonempty subsets of S/N(S) and r(A) 

c r(B) in S/N(S) then r(A) ~ r(B) in H/N(H). Thus, a chain of right annihilators 
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in S/N(S) of length k forces a chain of right ideals of length k in H/N(H). A chain 

of right ideals of H/N(H) has at most n nonzero terms because H/N(H) is a 

completely reducible ring and has dimension n by Proposition 1. Therefore, a 

chain of right (or left) annihilators in SIN(S) has at most n nonzero terms. A nil 

subring of H/N(H) is nilpotent and has an index of nilpotency of at most n + 1. 

The remainig part is clear. 

COROLLARY 4. (Feller [2]). I f  MR has dimension 1 then S /N(S) is an integral 

domain. 

PROOF. A completely reducible ring with dim 1 is a division ring. The result is 

clear. 

I f  M = R then S = R and N(S) = N(R). Clearly, N(R) is the right singular 

ideal of R [-6]. 

COROLLARY 5. (Shock [10]). Let R be a right finite dimensional ring with dim 

n. Then a nil subring K of R is nilpotent if and only i l K  C~N(R) is nilpotent. 

I f  N(R) is nilpotent with index k then every nil subring of R is nilpotent and has 

index of nilpotency of at most k(n + 1). 

PROOF. The proof follows directly from Theorem 3. 

If  a ring R does not have an identity 1, embed it into a ring with 1, written 

RI[,1, p. 10]. Thus, Hom(MR, MR)=Hom(MR,,MR~), MR is injective if and only 

if M*, is injective, and dimMg = dimM*~ [-1, p. 10-11]. Also R/N(R) is embedded 

in R1/N(R1). Theorem 3 is valid for rings without 1. 

3. Nil subrings of S are nilpotent. 

In this section we place conditions on M so that every nil subring of S will be 

nilpotent. Our approach is via Theorem 3. If  M is finite dimensional and N(S) is 

nilpotent then every nil sabring of S is nilpotent. 

Let S be the ring of endomorphisms of the module M R. Then sM R is a bimodule. 

For  nonempty subset A of M we define r(A) = {x ~ R: ax = 0 for all a s A}. The 

right ideal r(A) is called an annihilator of M. We say that the module M R satisfies 

the maximum condition on annhihlators provided that every nonempty subcol- 

lection of {r(A): A is nonempty subset of M} has a maximal element. We define 

l(A) = {p6 S: pa = 0 for all a 6 A}. In like manner we make similar definitions 

for the module sM and sS and speak of the minimum condition on annihilators 

of s M and sS. Also if K is a nonempty subset of S we equate KM with {kin: for 

all m e M and for all k e K}. 
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LEMMA 6. I f  sM satisfies the minimum (maximum) condition on annihila- 

tors, then so does sS. 

PROOF. Let A and B be nonempty subsets of  S with A = B. Then l (A)~  I(B) in 

s S implies A M  c B M  in M and I(AM) ~ I(BM) in S. The proof  is clear. 

PROPOSITION 7. (Mewborn and Winton). Let S be the ring of endomorphisms 

of a module M. l f  sM satisfies the minimum condition on annihilators then N(S) 

is nilpotent. 

PROOF. By the lemma sS satisfies the minimum condition on annihilators. 

This implies that sS satisfies the maximum condition on annihilators. Let N 

= N(S). We have r(N j) = r(N i+ 1) in S for positive integer j. Let x ~ N - r(NJ). 

I f  NJyx = 0 for all y ~ N then x ~ r(N i+ 1), a contradiction. Thus, x l x  ~ N - r(N j) 

for  some x 1 in N. We continue in this manner  to construct an infinite sequence 

x, xl,  x2, "'" in N with x k ... x l x  ~ 0 for  all positive integers k. Therefore, ker x 

ker x lx  c ker x2xlx  = ... because ker Xk+ ~ is essential in M and meets Xk "'" 

x l x M  for  all k. This implies l(ker x )=  l(ker x lx )  ~ ... in S, a contradiction. We 

conclude that N ~ r(N j) and N is nilpotent. 

COROLLARY 8. (Mewborn and Winton [93). I f  a ring R satisfies the max imum 

condition on annihilators of RR then the right singular ideal is nilpotent. 

PROOF. The p roof  is clear. 

Let A and B be submodules of  M R. Following [8] we say that B is an M- 

rational extension of A provided that A = B and i f f  is any R-homomorphism 

from a submodule of  B into M and the kernel o f f  ~ A then f must be the zero 

map. Also, a submodule A of B is said to be M-rationally closed i f  A has no 

proper  M-rational extensions in B. A right ideal T of  R is said to be M-dense 

provided that m T =  0 with m in I (M) implies m = 0. Equivalently, for  each 0 ~ m 

in M and x in R there exists y in R such that my ~ 0 and xy in T. I f  b ~ M and P 

is a nonempty subset of  M we define b-  1 p = {r ~ R: br ~ P}. For  a submodule K 

of  M let K '  = { m ~ M :  m - l K  is M-dense} and K '  is a submodule and is called 

the rational closure of  K in M [113. Furthermore, K is M-rationally closed if and 

only if K = K '  [11]. We say that MR satisfies the maximum condition on ration- 

ally closed submodule if  every nonempty subcollection of  the collection of  M- 

rationally closed submodules of  M has a maximal element. I f  M = R, then a R- 

rationally closed right ideal of  R is an annihilator of I(R) (and conversely) [113. 

Rings with the maximum condition on rationally closed right ideals are called 
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Solid Goldie rings [5-1. A Noetherian ring is a Solid Goldie ring but not  conversely 

In a Solid Goldie ring a nil subring is nilpotent;  our Theorem 10 below general- 

izes this fact. 

LEMMA 9. Let A and B be submodules of M a with A c B. Then A' c B' if 

and only i f b - l A  is not M-dense for some bGB - A. 

PROOF. Clearly, A' = B' if and only if B c A' if  and only if b-  :A is M-dense 

for all b ~ B - A. 

THEOREM 10. Assume that M R satisfies the maximum condition on rational- 

ly closed submodules of M. I f  S is the ring of endomorphisms of MR then sM 

satisfies the minimum condition on anihilators. Furthermore, every nil subring 

of S is nilpotent. 

PROOF. We claim that MR is finite dimensional. Suppose that A + B is a direct 

sum of  nonzero submodules of  M. Then for any b ~ B - A we have b(b- :A) = (0) 

and b-  :A is not  M-dense and thus A' ~ (A + B)' by Lemma 9. So an infinite direct 

sum of nonzero submodules of  M would force an increasing sequence of  rationally 

closed submodules of  M, a contradiction. Therefore, M is finite dimensional. Let 

E and F be nonempty subsets of M with E ~ F and suppose l(E) ~ l(F). Since l(E) 

is equal to the left annihilator of the submodule of  MR generated by E we can 

regard E (and F) as submodules. There is x ~ S such that xE = 0 and xp ~ 0 for 

some p~F. Therefore, xp(p-XE) = (0) and p-XE is not  M-dense and E'  c F '  by 

Lemma 9. So a decreasing sequence of annihilators in S would force an increasing 

sequence of  rationally closed submodules of  MR, a contradiction. Therefore, s M 

satisfies the minimum condition on annihilators and N(S) is nilpotent by Propo- 

sition 7. By Theorem 3 every nil subring of S is nilpotent. 

COROLLARY 11. (Lance Small). In the ring of endomorphisms of a Noether- 

Jan module a nil subring is nilpotent. 

PROOF. A noetherian module has the maximum condition on rationally closed 

submodules. 

A ring R is said to be semiprimary if R is semiperfect and the Jacobson radical 

of  R is nilpotent. 

COROLLARY 12. Let MR be an injective module which has the maximum con- 

dition on rationally closed submodules. Then the ring of endomorphisms of M R 

is a semiprimary ring. 

PROOF. This follows from Proposition t and Theorem 10. 
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